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NRL Background

n In many least squares problems, QR decomposition is employed

l Factor matrix A into unitary matrix Q and upper triangular matrix R such 
that A = QR

n Two primary algorithms available to compute QR decomposition

l Givens rotations

u Pre-multiplying rows i-1 and i of a matrix A by a 2x2 Givens rotation matrix will zero the 
entry A( i, j )

l Householder reflections

u When a column of A is multiplied by an appropriate Householder reflection, it is possible 
to zero all the subdiagonal entries in that column
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NRL Problem Statement

n Want to minimize the latency incurred when computing the QR 
decomposition of a matrix A and maintain performance across 
different platforms

n Algorithm consists of parallel Givens task and serial Householder task

n Parallel Givens task

l Allocate blocks of rows to different processors.  Each processor uses 
Givens rotations to zero all available entries within block such that

u A( i, j ) = 0 only if A( i-1, j-1 ) = 0 and A( i, j-1 ) = 0

n Serial Householder task

l Once Givens task terminates, all distributed rows are sent to root 
processor which utilizes Householder reflections to zero remaining entries
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NRL Givens Task

n Each processor uses Givens 
rotations to zero entries up to the 
topmost row in the assigned group

n Once task is complete, rows are 
returned to the root processor

n Givens rotations are accumulated in 
a separate matrix before updating 
all of the columns in the array

l Avoids updating columns that will 
not be use by an immediately 
following Givens rotation

l Saves significant fraction of 
computational flops
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NRL Householder Task

n Root processor utilizes 
Householder reflections to zero 
remaining entries in Givens 
columns

n By computing a-priori where zeroes 
will be after each Givens task is 
complete, root processor can 
perform a sparse matrix multiply 
when performing a Householder 
update for additional speed-up

l Householder update is A = A - ßvvTA

n Householder update involves 
matrix-vector multiplication and an 
outer product update

l Makes extensive use of BLAS 
routines 
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NRL Dependency Graph - Path 1
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n Algorithm must zero matrix entries 
in such an order that previously 
zeroed entries are not filled-in

n Implies that A( i, j ) can be zeroed 
only if A( i-1, j-1 ) and A( i, j-1 ) are 
already zero  

n More than one sequence exists to 
zero entries such that above 
constraint is satisfied

n Choice of path through dependency 
graph greatly affects performance
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NRL Dependency Graph - Path 2

n By traversing dependency graph in 
zig-zag fashion, cache line reuse is 
maximized

l Data from row already in cache is 
used to zero several matrix entries 
before row is expunged from cache
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NRL

n Parameterized Algorithms make 
effective use of memory hierarchy

l Improve spatial locality of memory 
references by grouping together 
data used at the same time

l Improve temporal locality of memory 
references by using data retrieved 
from cache as many times as 
possible before cache is flushed

n Portable performance is primary 
objective

Parameterized Algorithms :
Memory Hierarchy

CPU

Registers

First Level Cache

Main Memory

Second Level Cache

Memory Hierarchy of SGI O2000

0 clock cycles

2 - 3 clock cycles

8 - 10 clock cycles

60 - 200 clock cycles
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NRL Givens Parameter

n Parameter c controls the number of 
columns in Givens task

n Determines how many matrix 
entries can be zeroed before rows 
are flushed from cache
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NRL Householder Parameter

n Parameter h controls the number of 
columns zeroed by Householder 
reflections at the root processor

n If h is large, the root processor 
performs more serial work, avoiding 
the communication costs 
associated with the Givens task

n However, the other processors sit 
idle longer, decreasing the 
efficiency of the algorithm
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NRL Work Partition Parameters

n Parameters v and w allow operator 
to assign rows to processors such 
that the work load is balanced and 
processor idle time is minimized
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NRL

Results
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NRL

HP Superdome
SPAWAR in San Diego, CA 

Server Computer (1)

n 48 550-MHz PA-RISC 8600 CPUs

n 1.5 MB on-chip cache per CPU

n 1 GB RAM / Processor
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NRL Server Computer (2)

n 512 R12000 processors running at 
400 MHz

n 8 MB on-chip cache

n Up to 2 GB RAM / Processor

SGI O3000
NRL in Washington, D.C. 
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NRL Embedded Computer

n 8 Motorola 7400 processors with 
AltiVec units

n 400 MHz clock

n 64 MB RAM per processor

Mercury
JHU in Baltimore, MD 
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NRL Effect of c
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NRL

100 x 100 array
4 processors
c = 63, p = 12

Effect of h
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NRL Effect of w

100 x 100 array
4 processors
h = 15, p = 10, 
c = 60, v = 15
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NRL
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NRL Scalability
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NRL Comparison to SCALAPACK

n For matrix sizes on the order of 100 
by 100, the Hybrid QR algorithm 
outperforms the SCALAPACK 
library routine PSGEQRF by 16%

n Data distributed in block cyclic 
fashion before executing PSGEQRF
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• 4 processors
• SGI O3000
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NRL Conclusion

n Hybrid QR algorithm using combination of Givens rotations and 
Householder reflections is efficient way to compute QR decomposition 
for small arrays on the order of 100 x 100

n Algorithm implemented on SGI O3000 and HP Superdome servers as 
well as Mercury G4 embedded computer

n Mercury implementation lacked optimized BLAS routines and as a 
consequence performance was significantly slower

n Algorithm has applications to signal processing problems such as
adaptive nulling where strict latency targets must be satisfied


